

<u>Oueridos/as estudiantes, les dejo esta guía para trabajar desde el hogar, además de la tarea que se había</u> enviado, cualquier duda al correo manriquez.marian@gmail.com

*** NUMEROS IMAGINARIOS:**

- Ecuaciones de la forma $x^2 + 1 = 0$ no tienen solución en el conjunto de los números reales, puesto que no existe ningún número real cuyo cuadrado sea un número negativo.
- Ante esta dificultad, no vemos en la necesidad de ampliar el conjunto de los números reales al conjunto de los números imaginarios.

El nombre "Numero Imaginario (i)" se debe a los matemáticos del siglo XVI que lo consideraban como algo **irreal**, se cree que el famoso matemático Leonhard Euler que eligió la primera palabra de "*imaginarius*"

Arr <u>UNIDAD IMAGINARIA</u>: En los números imaginarios se distingue la unidad imaginaria, que se simboliza por i, y se define como:

$$i^2 = -1$$
, es decir, $i = \sqrt{-1}$

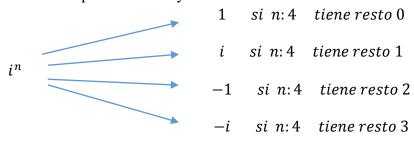
***** IMAGINARIO PURO: Cualquier número de la forma $\sqrt{-b} = \sqrt{b} i$, con b > 0

$$\sqrt{-9} = \sqrt{9 \cdot -1} = +3i$$

POTENCIAS EN i: Se llaman potencias básicas o canónicas de la unidad imaginaria a las 4 primeras potencias.

$i^1 = i$	
$i^2 = -1$	
$i^3 = i^2 \cdot i = -1 \cdot i = -i$	
$i^4 = i^2 \cdot i^2 = (-1) \cdot (-1) = 1$	

Pero si el exponente de la potencia es mayor debemos considerar:



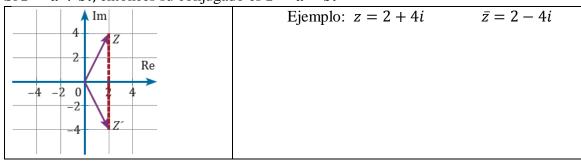
- * NUMERO COMPLEJO: Expresión de la forma a + bi, donde a y b son números reales, donde a es la parte real y b es la parte imaginaria del número complejo e i es la parte imaginaria. (Real Puro a + 0i) Se puede representar, al menos, de 3 maneras:
 - 1) Forma canónica o binómica (a + bi),... ejemplo z = 3 2i
 - 2) Forma cartesiana o como par ordenado (a, b) ejemplo (3,-2)
 - 3) De manera gráfica (como un vector). (plano de Argand)

❖ IGUALDAD DE NÚMEROS COMPLEJOS (ℂ): Dos números complejos $z_1 = a + bi$ $y z_2 = c + di$ son iguales si y solo si sus partes reales y sus partes imaginarias son iguales respectivamente. Es decir:

$$z_1 = z_2 \Leftrightarrow a + bi = c + di \Leftrightarrow a = c y b = d$$

CONJUGADO DE UN COMPLEJO: Dos números complejos se dicen conjugados si solo difieren en el signo de la parte imaginaria. El conjugado de z se denota por \bar{z} , y será el simétrico respecto al eje real.

Si z = a + bi, entonces su conjugado es $\bar{z} = a - bi$



MÓDULO DE UN COMPLEJO: Corresponde a la longitud del vector que z representa, se denota por |z|y corresponde a un número real.

$$|z| = \sqrt{a^2 + b^2}$$

Ejemplo:
$$|z| = 3 - 4i \longrightarrow \sqrt{9 + 16} \longrightarrow \sqrt{25} \longrightarrow 5$$

Guía de Ejercicios

1) Identificar la parte real y la parte imaginaria de los siguientes números complejos

a.
$$(6, -5)$$
b. $-8 + i$
c. $\sqrt{6} - 8i$
d. $-11 + 2i$
e. $(9, -3)$
f. $16 + 75i$
h. $(-4, 3)$

2) Determina el conjugado de los siguientes números complejos.

a.
$$2 + i$$
 d. $6 - 3i$ **f.** $-12 + \sqrt{5}i$ **i.** $-11 + 37i$ **b.** $-1 + 3i$ **c.** $8 - 9i$ **e.** $-\frac{1}{2} - \frac{3}{4}i$ **g.** $-2,4 + 11i$ **j.** $-3 - 4i$

3) Calcular el módulo de cada uno de lo siguientes números complejos.

4) Expresar en su forma cartesiana los siguientes números complejos.

a.
$$4 + 2i$$
 c. $-7 - 11i$ **e.** $17 - 8i$ **g.** $-3i$ **b.** $-5 + 9i$ **d.** $12 - 39i$ **f.** $\sqrt{7}i$ **h.** 14

5) Expresar en su forma binomial los siguientes números complejos.

6) Grafica en el plano de Argand cada uno de los siguientes números complejos.

a. 8 + 9i	c. $\frac{7}{2}$ + 5i
b. -4 + i	d. 16 – 8i

7) Completa el siguiente cuadro.

) Completa cr	Completa el siguiente cuadio.							
Z	Re(z)	Im(z)	Notación Cartesiana	z	$ar{z}$	$ ar{z} $		
2 - 5i								
	-4	-1						
			$\left(\frac{1}{2}, -\frac{3}{7}\right)$					
					16 – 4 <i>i</i>			
	11	5						
					8 + 9 <i>i</i>			
			$(-\sqrt{3},4)$					

8) Determina el valor de las siguientes potencias.

a) i ¹⁷¹	b) i ³	c) i ⁵⁴	d) i ²⁰³⁴	e) i ¹²¹
f) i ⁴⁵	g) i ²³¹⁴	h) i ¹²⁵	i) i ⁶⁴	j) i ¹⁰²